Dynamic Modelling of Aerobic Granular Sludge Artificial Neural Networks
نویسندگان
چکیده
Received Feb 13, 2017 Revised Apr 18, 2017 Accepted May 2, 2017 Aerobic Granular Sludge (AGS) technology is a promising development in the field of aerobic wastewater treatment system. Aerobic granulation usually happened in sequencing batch reactors (SBRs) system. Most available models for the system are structurally complex with the nonlinearity and uncertainty of the system makes it hard to predict. A reliable model of AGS is essential in order to provide a tool for predicting its performance. This paper proposes a dynamic neural network approach to predict the dynamic behavior of aerobic granular sludge SBRs. The developed model will be applied to predict the performance of AGS in terms of the removal of Chemical Oxygen Demand (COD). The simulation uses the experimental data obtained from the sequencing batch reactor under three different conditions of temperature (30 ̊C, 40 ̊C and 50 ̊C). The overall results indicated that the dynamic of aerobic granular sludge SBR can be successfully estimated using dynamic neural network model, particularly at high temperature. Keyword:
منابع مشابه
Dynamic Performance Analysis and Simulation of a Full Scale Activated Sludge System Treating an Industrial Wastewater Using Artificial Neural Network
Due to changeable nature of the industrial wastewaters, proper operation of an industrial wastewater treatment plant is of prior importance in order to keep the process stability at the desired conditions. In this mean, simulation of the treatment system behavior using artificial neural network (ANN) can be an effective tool. This paper evaluates long term performance and process stability of ...
متن کاملMonthly runoff forecasting by means of artificial neural networks (ANNs)
Over the last decade or so, artificial neural networks (ANNs) have become one of the most promising tools formodelling hydrological processes such as rainfall runoff processes. However, the employment of a single model doesnot seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process thatvaries in space and time. For this reason, this study aims at de...
متن کاملRainfall-runoff modelling using artificial neural networks (ANNs): modelling and understanding
In recent years, artificial neural networks (ANNs) have become one of the most promising tools in order to model complex hydrological processes such as the rainfall-runoff process. In many studies, ANNs have demonstrated superior results compared to alternative methods. ANNs are able to map underlying relationship between input and output data without prior understanding of the process under in...
متن کاملModelling of Conventional and Severe Shot Peening Influence on Properties of High Carbon Steel via Artificial Neural Network
Shot peening (SP), as one of the severe plastic deformation (SPD) methods is employed for surface modification of the engineering components by improving the metallurgical and mechanical properties. Furthermore artificial neural network (ANN) has been widely used in different science and engineering problems for predicting and optimizing in the last decade. In the present study, effects of conv...
متن کاملEfficient Parameters Selection for CNTFET Modelling Using Artificial Neural Networks
In this article different types of artificial neural networks (ANN) were used for CNTFET (carbon nanotube transistors) simulation. CNTFET is one of the most likely alternatives to silicon transistors due to its excellent electronic properties. In determining the accurate output drain current of CNTFET, time lapsed and accuracy of different simulation methods were compared. The training data for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017